Illustration of how to compute the product of two matrices.
Edit and compile if you like:
% Author : Alain Matthes % Source : http://altermundus.com/pages/examples.html \documentclass[]{article} \usepackage[utf8]{inputenc} \usepackage[upright]{fourier} \usepackage{tikz} \usetikzlibrary{matrix,arrows,decorations.pathmorphing} \begin{document} % l' unite \newcommand{\myunit}{1 cm} \tikzset{ node style sp/.style={draw,circle,minimum size=\myunit}, node style ge/.style={circle,minimum size=\myunit}, arrow style mul/.style={draw,sloped,midway,fill=white}, arrow style plus/.style={midway,sloped,fill=white}, } \begin{tikzpicture}[>=latex] % les matrices \matrix (A) [matrix of math nodes, nodes = {node style ge}, left delimiter = (, right delimiter = )] at (0,0) { a_{11} & a_{12} & \ldots & a_{1p} \\ |[node style sp]| a_{21} & |[node style sp]| a_{22} & \ldots & |[node style sp]| a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{np} \\ }; \node [draw,below=10pt] at (A.south) { $A$ : \textcolor{red}{$n$ rows} $p$ columns}; \matrix (B) [matrix of math nodes, nodes = {node style ge}, left delimiter = (, right delimiter = )] at (6*\myunit,6*\myunit) { b_{11} & |[node style sp]| b_{12} & \ldots & b_{1q} \\ b_{21} & |[node style sp]| b_{22} & \ldots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & |[node style sp]| b_{p2} & \ldots & b_{pq} \\ }; \node [draw,above=10pt] at (B.north) { $B$ : $p$ rows \textcolor{red}{$q$ columns}}; % matrice résultat \matrix (C) [matrix of math nodes, nodes = {node style ge}, left delimiter = (, right delimiter = )] at (6*\myunit,0) { c_{11} & c_{12} & \ldots & c_{1q} \\ c_{21} & |[node style sp,red]| c_{22} & \ldots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \ldots & c_{nq} \\ }; % les fleches \draw[blue] (A-2-1.north) -- (C-2-2.north); \draw[blue] (A-2-1.south) -- (C-2-2.south); \draw[blue] (B-1-2.west) -- (C-2-2.west); \draw[blue] (B-1-2.east) -- (C-2-2.east); \draw[<->,red](A-2-1) to[in=180,out=90] node[arrow style mul] (x) {$a_{21}\times b_{12}$} (B-1-2); \draw[<->,red](A-2-2) to[in=180,out=90] node[arrow style mul] (y) {$a_{22}\times b_{22}$} (B-2-2); \draw[<->,red](A-2-4) to[in=180,out=90] node[arrow style mul] (z) {$a_{2p}\times b_{p2}$} (B-4-2); \draw[red,->] (x) to node[arrow style plus] {$+$} (y)% to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z) to (C-2-2.north west); \node [draw,below=10pt] at (C.south) {$ C=A\times B$ : \textcolor{red}{$n$ rows} \textcolor{red}{$q$ columns}}; \end{tikzpicture} \begin{tikzpicture}[>=latex] % unit % defintion of matrices \matrix (A) [matrix of math nodes,% nodes = {node style ge},% left delimiter = (,% right delimiter = )] at (0,0) {% a_{11} &\ldots & a_{1k} & \ldots & a_{1p} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ |[node style sp]| a_{i1} & \ldots% & |[node style sp]| a_{ik}% & \ldots% & |[node style sp]| a_{ip} \\ \vdots & \vdots& \vdots & \ddots & \vdots \\ a_{n1}& \ldots & a_{nk} & \ldots & a_{np} \\ }; \node [draw,below] at (A.south) { $A$ : \textcolor{red}{$n$ rows} $p$ columns}; \matrix (B) [matrix of math nodes,% nodes = {node style ge},% left delimiter = (,% right delimiter =)] at (7*\myunit,7*\myunit) {% b_{11} & \ldots& |[node style sp]| b_{1j}% & \ldots & b_{1q} \\ \vdots& \ddots & \vdots & \vdots & \vdots \\ b_{k1} & \ldots& |[node style sp]| b_{kj}% & \ldots & b_{kq} \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ b_{p1} & \ldots& |[node style sp]| b_{pj}% & \ldots & b_{pq} \\ }; \node [draw,above] at (B.north) { $B$ : $p$ rows \textcolor{red}{$q$ columns}}; % matrice resultat \matrix (C) [matrix of math nodes,% nodes = {node style ge},% left delimiter = (,% right delimiter = )] at (7*\myunit,0) {% c_{11} & \ldots& c_{1j} & \ldots & c_{1q} \\ \vdots& \ddots & \vdots & \vdots & \vdots \\ c_{i1}& \ldots & |[node style sp,red]| c_{ij}% & \ldots & c_{iq} \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ c_{n1}& \ldots & c_{nk} & \ldots & c_{nq} \\ }; \node [draw,below] at (C.south) {$ C=A\times B$ : \textcolor{red}{$n$ rows} \textcolor{red}{$q$ columns}}; % arrows \draw[blue] (A-3-1.north) -- (C-3-3.north); \draw[blue] (A-3-1.south) -- (C-3-3.south); \draw[blue] (B-1-3.west) -- (C-3-3.west); \draw[blue] (B-1-3.east) -- (C-3-3.east); \draw[<->,red](A-3-1) to[in=180,out=90] node[arrow style mul] (x) {$a_{i1}\times b_{1j}$} (B-1-3); \draw[<->,red](A-3-3) to[in=180,out=90] node[arrow style mul] (y) {$a_{ik}\times b_{kj}$}(B-3-3); \draw[<->,red](A-3-5) to[in=180,out=90] node[arrow style mul] (z) {$a_{ip}\times b_{pj}$}(B-5-3); \draw[red,->] (x) to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (y) to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z); % % to (C-3-3.north west); \draw[->,red,decorate,decoration=zigzag] (z) -- (C-3-3.north west); \end{tikzpicture} \end{document} % encoding : utf8 % format : pdfLaTeX % author : Alain Matthes
Click to download: matrix-multiplication.tex • matrix-multiplication.pdf
Open in Overleaf: matrix-multiplication.tex