
Edit and compile if you like:
% Logarithmic spiral% Author: Andrew Mertz\documentclass{minimal}\usepackage{tikz}\usetikzlibrary{backgrounds,calc}\usepackage[active,tightpage]{preview}\PreviewEnvironment{tikzpicture}\setlength\PreviewBorder{0pt}%\begin{document}\begin{tikzpicture}[background rectangle/.style={fill=black},show background rectangle, x=1pt, y=1pt]% Compute the golden ratio\pgfmathsetmacro{\goldenRatio}{(1+sqrt(5)) / 2}% Compute the angle between the tangent and radial line\pgfmathsetmacro{\offset}{rad(atan(2*ln(\goldenRatio)/pi))};% Plot the spiral using the parametric form of a logarithmic spiral% (a e^{b t} cos(t), a e^{b t} sin(t)). In this case a = 1 and b = 2% ln((1+sqrt(5)) / 2) / pi. There can be a slight gap between the% last line segment and the end of the plot. Having a large sample% size reduces the gap.\draw[very thick,white,domain=\offset:\offset+14*pi/2,smooth,samples=600,variable=\t] plot({pow(\goldenRatio, 2 * \t / pi) * cos(\t r)},{pow(\goldenRatio, 2 * \t / pi) * sin(\t r)})coordinate(end);% Remember the start of the spiral\coordinate (0) at({pow(\goldenRatio, 2 * \offset / pi) * cos(\offset r)},{pow(\goldenRatio, 2 * \offset / pi) * sin(\offset r)});% This loop draws the line segments\foreach \i in {1,...,14}{% Get the "name" of the last point on the spiral\pgfmathsetmacro{\lastpoint}{\i-1}
Click to download: logarithmic-spiral.tex • logarithmic-spiral.pdf
Open in Overleaf: logarithmic-spiral.tex