# Example: Butterfly Lemma

Published 2012-11-18 | Author: Kannappan Sampath
A diagram for the Butterfly Lemma

Do you have a question regarding this example, TikZ or LaTeX in general? Just ask in the LaTeX Forum.
Oder frag auf Deutsch auf TeXwelt.de. En français: TeXnique.fr.

% Butterfly Lemma
% Author: Kannappan Sampath
\documentclass{amsart}
\usepackage{amsmath}
\usepackage{amsthm}
\newtheorem*{theorem}{Theorem}
\usepackage{tikz}
\usetikzlibrary{matrix}
\title{Zassenhaus' Lemma}
\author{Kannappan Sampath}
\begin{document}
\maketitle
Zassenhaus' Lemma states that:
\begin{theorem}[Zassenhaus' Lemma]
Let $A \unlhd A^\ast$ and $B \unlhd B^\ast$ be subgroups of $G.$ Then,
\begin{align}
A(A^\ast \cap B) \unlhd A(A^\ast \cap B^\ast) \\
B(B^\ast \cap A) \unlhd B(B^\ast \cap A^\ast)
\end{align}
and we have an isomorphism:
\begin{align}
\frac{A(A^\ast \cap B^\ast)}{A(A^\ast \cap B)} \simeq \frac{B(B^\ast \cap A^\ast)}{B(B^\ast \cap A)}
\end{align}
\end{theorem}
The picture below represents the butterfly that goes with its proof.

\begin{figure}[h!]
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=1.5em,
column sep=0.3em, text height=1.5ex, text depth=0.25ex]
{ A^\ast & & & & B^\ast \\
&&&&\\
A(A^\ast  \cap B)& & & &  B(A^\ast \cap B^\ast) \\
&&A^\ast \cap B^\ast && \\
A(A^\ast \cap B)&&&& B(A \cap B^\ast)\\
&&(A \cap B^\ast)(A^\ast \cap B)&& \\
A &&&& B \\
&A \cap B^\ast &&A^\ast \cap B& \\};

\path[-] (m-1-1) edge (m-3-1)
(m-3-1) edge  (m-4-3)
edge [-,line width=1pt, draw=blue](m-5-1)
(m-5-1) edge (m-6-3)
edge (m-7-1)
(m-7-1) edge (m-8-2)
(m-8-2) edge (m-6-3)
(m-6-3) edge (m-8-4)
edge (m-5-5)
edge [-,line width=1pt, draw=blue](m-4-3)
(m-7-5) edge (m-5-5)
edge (m-8-4)
(m-1-5) edge (m-3-5)
(m-3-5) edge (m-4-3)
edge [-,line width=1pt, draw=blue](m-5-5);
\end{tikzpicture}
\caption{The Butterfly}
\end{figure}

In the figure, the quotients given by the blue line are isomorphic to each other thus proving the Zassenhaus' Lemma. Further, the black line indicates that the group that lies below is normal in the groups connected to it and lies above it in the plane of the figure.

\end{document} 