This is a drawing of a tetrahedron inscibed in a parallelepiped. See the following reference p. 58-63 S 189 to 202
@BOOK{altshiller1935modern,
title = {Modern pure solid geometry},
publisher = {The Macmillan company},
year = {1935},
author = {Altshiller-Court, N.},
address = {New York},
edition = {first},
lccn = {35024297},
url = {http://books.google.ca/books?id=DDYGAQAAIAAJ}
}

Edit and compile if you like:
% Circumscribed Parallelepiped% Author: Axel Pavillet\documentclass[tikz,border=10pt]{standalone}\begin{document}\begin{tikzpicture}[font=\LARGE]% Figure parameters (tta and k needs to have the same sign)% They can be modified at will\def \tta{ -10.00000000000000 } % Defines the first angle of perspective\def \k{ -3.00000000000000 } % Factor for second angle of perspective\def \l{ 6.00000000000000 } % Defines the width of the parallelepiped\def \d{ 5.00000000000000 } % Defines the depth of the parallelepiped\def \h{ 7.00000000000000 } % Defines the heigth of the parallelepiped% The vertices A,B,C,D define the reference plan (vertical)\coordinate (A) at (0,0);\coordinate (B) at ({-\h*sin(\tta)},{\h*cos(\tta)});\coordinate (C) at ({-\h*sin(\tta)-\d*sin(\k*\tta)},{\h*cos(\tta)+\d*cos(\k*\tta)});\coordinate (D) at ({-\d*sin(\k*\tta)},{\d*cos(\k*\tta)});% The vertices Ap,Bp,Cp,Dp define a plane translated from the% reference plane by the width of the parallelepiped\coordinate (Ap) at (\l,0);\coordinate (Bp) at ({\l-\h*sin(\tta)},{\h*cos(\tta)});\coordinate (Cp) at ({\l-\h*sin(\tta)-\d*sin(\k*\tta)},{\h*cos(\tta)+\d*cos(\k*\tta)});\coordinate (Dp) at ({\l-\d*sin(\k*\tta)},{\d*cos(\k*\tta)});% Marking the vertices of the tetrahedron (red)% and of the parallelepiped (black)\fill[black] (A) circle [radius=2pt];\fill[red] (B) circle [radius=2pt];\fill[black] (C) circle [radius=2pt];\fill[red] (D) circle [radius=2pt];\fill[red] (Ap) circle [radius=2pt];\fill[black] (Bp) circle [radius=2pt];\fill[red] (Cp) circle [radius=2pt];\fill[black] (Dp) circle [radius=2pt];% painting first the three visible faces of the tetrahedron
Click to download: parallelepiped.tex • parallelepiped.pdf
Open in Overleaf: parallelepiped.tex