This example is from the tutorial: A picture for Karl's students.
Author: Till Tantau Source: The PGF/TikZ manualEdit and compile if you like:
% Author: Till Tantau % Source: The PGF/TikZ manual \documentclass{minimal} \usepackage{tikz} %\usetikzlibrary{trees,snakes} \begin{document} \pagestyle{empty} \begin{tikzpicture}[scale=3,cap=round] % Local definitions \def\costhirty{0.8660256} % Colors \colorlet{anglecolor}{green!50!black} \colorlet{sincolor}{red} \colorlet{tancolor}{orange!80!black} \colorlet{coscolor}{blue} % Styles \tikzstyle{axes}=[] \tikzstyle{important line}=[very thick] \tikzstyle{information text}=[rounded corners,fill=red!10,inner sep=1ex] % The graphic \draw[style=help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4); \draw (0,0) circle (1cm); \begin{scope}[style=axes] \draw[->] (-1.5,0) -- (1.5,0) node[right] {$x$}; \draw[->] (0,-1.5) -- (0,1.5) node[above] {$y$}; \foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1} \draw[xshift=\x cm] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white] {$\xtext$}; \foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1} \draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white] {$\ytext$}; \end{scope} \filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,0pt) arc(0:30:3mm); \draw (15:2mm) node[anglecolor] {$\alpha$}; \draw[style=important line,sincolor] (30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} +(0,-.5); \draw[style=important line,coscolor] (0,0) -- node[below=2pt,fill=white] {$\cos \alpha$} (\costhirty,0); \draw[style=important line,tancolor] (1,0) -- node [right=1pt,fill=white] { $\displaystyle \tan \alpha \color{black}= \frac{{\color{sincolor}\sin \alpha}}{\color{coscolor}\cos \alpha}$ } (intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t); \draw (0,0) -- (t); \draw[xshift=1.85cm] node [right,text width=6cm,style=information text] { The {\color{anglecolor} angle $\alpha$} is $30^\circ$ in the example ($\pi/6$ in radians). The {\color{sincolor}sine of $\alpha$}, which is the height of the red line, is \[ {\color{sincolor} \sin \alpha} = 1/2. \] By the Theorem of Pythagoras we have ${\color{coscolor}\cos^2 \alpha} + {\color{sincolor}\sin^2\alpha} =1$. Thus the length of the blue line, which is the {\color{coscolor}cosine of $\alpha$}, must be \[ {\color{coscolor}\cos\alpha} = \sqrt{1 - 1/4} = \textstyle \frac{1}{2} \sqrt 3. \]% This shows that {\color{tancolor}$\tan \alpha$}, which is the height of the orange line, is \[ {\color{tancolor}\tan\alpha} = \frac{{\color{sincolor}\sin \alpha}}{\color{coscolor}\cos \alpha} = 1/\sqrt 3. \]% }; \end{tikzpicture} \end{document}
Click to download: tutorial.tex • tutorial.pdf
Open in Overleaf: tutorial.tex