Example: Animation for Lower Riemann Sum

Published 2020-11-01 | Author: Edson José Teixeira

An animation to the area of calculation using the lower Riemann sum.

That’s an approximation of an integral by a finite sum, named after the German mathematician Riemann. It is calculated by partitioning the region below the the curve into rectangles and summarizing their areas. To get a better approximation, the region is devided more finely. As the rectangles get smaller, the Rieman sum approaches the Riemann integral.

Download the PDF and play it, to see it actually animated, for example using the Adobe Reader.

Download as: [PDF] [TEX]

Animation for Lower Riemann Sum

Do you have a question regarding this example, TikZ or LaTeX in general? Just ask in the LaTeX Forum.
Oder frag auf Deutsch auf TeXwelt.de. En français: TeXnique.fr.

% Animation for Lower Riemann Sum
% Author: Edson José Teixeira
\documentclass[10pt]{beamer}
\usepackage[controls]{animate}
\usepackage{tikz}
\usetikzlibrary{arrows}
% Beamer Settings
\usetheme{Warsaw}
% Counters
\newcounter{lower} 
\setcounter{lower}{1}
\begin{document}
\begin{frame}[fragile]{Lower Sum of Riemann}
  \begin{figure}
    \begin{animateinline}[poster = first, controls]{5}
    \whiledo{\thelower<30}{
      \begin{tikzpicture}[line cap=round, line join=round, >=triangle 45,
                          x=4.0cm, y=1.0cm, scale=1]
        \draw[->, color=black] (-0.1,0) -- (2.5,0);
        \foreach \x in {1,2}
          \draw [shift={(\x,0)}, color=black] (0pt,2pt)
                -- (0pt,-2pt) node [below] {\footnotesize $\x$};
        \draw [color=black] (2.5,0) node [below] {$x$};
        \draw [->, color=black] (0,-0.1) -- (0,4.5);
        \foreach \y in {1,2,3,4}
          \draw [shift={(0,\y)}, color=black] (2pt,0pt)
                -- (-2pt,0pt) node[left] {\footnotesize $\y$};
        \draw [color=black] (0,4.5) node [right] {$y$};
        \draw [color=black] (0pt,-10pt) node [left] {\footnotesize $0$};
        \draw [domain=0:2.2, line width=1.0pt] plot (\x,{(\x)^2});
        \clip (0,-0.5) rectangle (3,5);
        \draw (2,0)--(2,4);
        \foreach \i in {1,...,\thelower}
        \draw [fill=black, fill opacity=0.3, smooth,samples=50]
                 ({1+(\i-1)/\thelower}, {(1+(\i-1)/\thelower)^2})
              -- ({1+(\i)/\thelower},   {(1+(\i-1)/\thelower)^2})
              -- ({1+(\i)/\thelower},0)
              -- ({1+(\i-1)/\thelower},0)
              -- cycle;
      \end{tikzpicture}
      \stepcounter{lower}
      \ifthenelse{\thelower<30}{ \newframe }{\end{animateinline} }
    }
    \caption{Lower Riemann Sum}
  \end{figure}
\end{frame}
\end{document}

Comments

Adding comments is currently not enabled.