This figure shows how an economy utilizing fixed exchange rates will react according to the IS-LM curve (sometimes also known as Mundell Flemming)
Edit and compile if you like:
% IS-LM diagram % Author: Rasmus Pank Roulund \documentclass{minimal} \usepackage{tikz} \usetikzlibrary{arrows,calc} \usepackage{relsize} \newcommand\LM{\ensuremath{\mathit{LM}}} \newcommand\IS{\ensuremath{\mathit{IS}}} \begin{document} \begin{tikzpicture}[ scale=2, IS/.style={blue, thick}, LM/.style={red, thick}, axis/.style={very thick, ->, >=stealth', line join=miter}, important line/.style={thick}, dashed line/.style={dashed, thin}, every node/.style={color=black}, dot/.style={circle,fill=black,minimum size=4pt,inner sep=0pt, outer sep=-1pt}, ] % axis \draw[axis,<->] (2.5,0) node(xline)[right] {$Y$} -| (0,2.5) node(yline)[above] {$i$}; % IS-LM diagram \draw[LM] (0.2,0.3) coordinate (LM_1) parabola (1.8,1.8) coordinate (LM_2) node[above] {\LM}; \draw[IS] (0.2,1.8) coordinate (IS_1) parabola[bend at end] (1.8,.3) coordinate (IS_2) node[right] {\IS}; %Intersection is calculated "manually" since Tikz does not offer %intersection calculation for parabolas \node[dot,label=above:$A$] at (1,.68) (int1) {}; %shifted IS-LM diagram \draw[xshift=.7cm, LM, red!52] (0.2,0.2) parabola (1.8,1.7) node[above] {\LM'}; \draw[xshift=.4cm, yshift=.3cm, IS, blue!60] (0.2,1.8) parabola[bend at end] (1.8,.3) node[right] {\IS'}; %Intersection of shifted IS-LM \path[xshift=.36cm, yshift=.35cm] (.98,.7) node[dot,label=above:{$B$}] (int2) {}; \path[xshift=.805cm] (1,.68) node[dot,label=above:$C$] (int3) {}; %arrows between intersections \draw[->, very thick, black, >=stealth'] ($(int1)+1/2*(-.80,1)$) -- ($(int2)+1/2*(-.8,1)$) node[sloped, above, midway] {$\mathsmaller{\Delta G > 0}$}; \draw[->, very thick, black, >=stealth'] ($(int2)+2*(.14,.2)$) -- ($(int2)!.2cm!270:(int2)+(.9,0)$) node[sloped,above, midway] {$\mathsmaller{\Delta M>0}$}; \begin{scope}[xshift=4cm] %E-diagram \draw[axis,<->] (0,2.5) node(eyline)[above] {$i$} |- (2.5,0) node(exline)[right] {$E$}; \draw[important line, green, xshift=.5cm] (.2,.2) coordinate (es) -- (1.5,1.5) coordinate (ee) node [above right] {Interest rate parity}; \end{scope} %Lines connecting IS LM coordinates and E coordinates \draw[dashed] let % Store the intersection point in \p1 for later retrieval. % A convenient feature of the let operation is that we can % access the x and y component of the coordinate directly % using the \x1 and \y1 syntax. \p1=(intersection of int2--[xshift=1]int2 and es--ee) in (0,\y1) node[left]{$i'$} -| (\x1,0) node[pos=0.5,dot,label=above:$B'$] {} node[below] {$E'$}; \draw[dashed line] let \p1=(intersection of int3--[xshift=1]int3 and es--ee) in (0,\y1) node[left]{$i\phantom{'}$} -| (\x1,0) node[dot,label=above:$C'$,pos=0.5] {} node[below] {$E$}; \end{tikzpicture} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End:
Click to download: is-lm-diagram.tex • is-lm-diagram.pdf
Open in Overleaf: is-lm-diagram.tex