The infinite series 1/4 + 1/16 + 1/64 + 1/256 + ... is one of the first computed infinite series in the history of mathematics, already used by Archimedes. Its sum is 1/3.
Edit and compile if you like:
% Geometric representation of the sum 1/4 + 1/16 + 1/64 + 1/256 + ... % Author: Jimi Oke \documentclass{article} \usepackage{tikz} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{5pt}% \begin{document} \begin{tikzpicture}[scale=.35]\footnotesize \pgfmathsetmacro{\xone}{-.4} \pgfmathsetmacro{\xtwo}{ 16.4} \pgfmathsetmacro{\yone}{-.4} \pgfmathsetmacro{\ytwo}{16.4} \begin{scope}<+->; % grid \draw[step=1cm,gray,very thin] (\xone,\yone) grid (\xtwo,\ytwo); % ticks \foreach \x/\xtext in { 8/\frac{1}{2}, 16/1} \draw[gray,xshift=\x cm] (0,.3) -- (0,0) node[below] {$\xtext$}; \foreach \y/\ytext in {8/\frac{1}{2},16/1} \draw[gray, yshift=\y cm] (.3,0) -- (0,0) node[left] {$\ytext$}; % origin \draw[gray] (0,0) node[anchor=north east] {$O$}; % axes \draw[gray,thick,<->] (\xone, 0) -- (\xtwo, 0) node[right] {$x$}; \draw[gray,thick,<->] (0, \yone) -- (0, \ytwo) node[above] {$y$}; \end{scope} % function \begin{scope}[thick,red] \foreach \x in {16, 8, 4, 2, 1,.5,.25} \draw (16-\x, 16-\x) rectangle (16,16); \foreach \x in {16, 8, 4, 2, 1,.5,.25} \filldraw[thin,red,opacity=.3] (16-\x, 16-\x) rectangle (16-.5*\x,16-.5*\x); \foreach \x in {16, 8, 4, 2, 1,.5,.25}{ \filldraw[thin,blue,opacity=.2] (16-\x, 16-.5*\x) rectangle (16-.5*\x,16); \filldraw[thin,blue,opacity=.2] (16-.5*\x, 16-\x) rectangle (16,16-.5*\x);} \end{scope} \end{tikzpicture} \end{document}
Click to download: geometric-series.tex • geometric-series.pdf
Open in Overleaf: geometric-series.tex