The infinite series 1/4 + 1/16 + 1/64 + 1/256 + ... is one of the first computed infinite series in the history of mathematics, already used by Archimedes. Its sum is 1/3.

Edit and compile if you like:
% Geometric representation of the sum 1/4 + 1/16 + 1/64 + 1/256 + ...% Author: Jimi Oke\documentclass{article}\usepackage{tikz}\usepackage[active,tightpage]{preview}\PreviewEnvironment{tikzpicture}\setlength\PreviewBorder{5pt}%\begin{document}\begin{tikzpicture}[scale=.35]\footnotesize\pgfmathsetmacro{\xone}{-.4}\pgfmathsetmacro{\xtwo}{ 16.4}\pgfmathsetmacro{\yone}{-.4}\pgfmathsetmacro{\ytwo}{16.4}\begin{scope}<+->;% grid\draw[step=1cm,gray,very thin] (\xone,\yone) grid (\xtwo,\ytwo);% ticks\foreach \x/\xtext in { 8/\frac{1}{2}, 16/1}\draw[gray,xshift=\x cm] (0,.3) -- (0,0) node[below] {$\xtext$};\foreach \y/\ytext in {8/\frac{1}{2},16/1}\draw[gray, yshift=\y cm] (.3,0) -- (0,0)node[left] {$\ytext$};% origin\draw[gray] (0,0) node[anchor=north east] {$O$};% axes\draw[gray,thick,<->] (\xone, 0) -- (\xtwo, 0) node[right] {$x$};\draw[gray,thick,<->] (0, \yone) -- (0, \ytwo) node[above] {$y$};\end{scope}% function\begin{scope}[thick,red]\foreach \x in {16, 8, 4, 2, 1,.5,.25}\draw (16-\x, 16-\x) rectangle (16,16);\foreach \x in {16, 8, 4, 2, 1,.5,.25}\filldraw[thin,red,opacity=.3] (16-\x, 16-\x)rectangle (16-.5*\x,16-.5*\x);
Click to download: geometric-series.tex • geometric-series.pdf
Open in Overleaf: geometric-series.tex