Representation of spherical (red) and cartesian (black) computational grids used by SWAN. Latter gives an example of unstructured grids. Conversion from former to latter involves a deformation factor which is acceptable within a given spatial limit.
The drawing is based on Tomas M. Trzeciak's Stereographic and cylindrical map projections example.
Edit and compile if you like:
% Author: Marco Miani \documentclass[12pt]{article} \usepackage{tikz} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{5pt}% \usetikzlibrary{positioning} %% helper macros % The 3D code is based on The drawing is based on Tomas M. Trzeciak's % `Stereographic and cylindrical map projections example`: % http://www.texample.net/tikz/examples/map-projections/ \newcommand\pgfmathsinandcos[3]{% \pgfmathsetmacro#1{sin(#3)}% \pgfmathsetmacro#2{cos(#3)}% } \newcommand\LongitudePlane[3][current plane]{% \pgfmathsinandcos\sinEl\cosEl{#2} % elevation \pgfmathsinandcos\sint\cost{#3} % azimuth \tikzset{#1/.style={cm={\cost,\sint*\sinEl,0,\cosEl,(0,0)}}} } \newcommand\LatitudePlane[3][current plane]{% \pgfmathsinandcos\sinEl\cosEl{#2} % elevation \pgfmathsinandcos\sint\cost{#3} % latitude \pgfmathsetmacro\yshift{\cosEl*\sint} \tikzset{#1/.style={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} % } \newcommand\DrawLongitudeCircle[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,thin,black] (\angVis:1) arc (\angVis:\angVis+180:1); \draw[current plane,thin,dashed] (\angVis-180:1) arc (\angVis-180:\angVis:1); }%this is fake: for drawing the grid \newcommand\DrawLongitudeCirclered[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,red,thick] (150:1) arc (150:180:1); %\draw[current plane,dashed] (-50:1) arc (-50:-35:1); }%for drawing the grid \newcommand\DLongredd[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,black,dashed, ultra thick] (150:1) arc (150:180:1); } \newcommand\DLatred[2][1]{ \LatitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)} % angle of "visibility" \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))} \draw[current plane,dashed,black,ultra thick] (-50:1) arc (-50:-35:1); } \newcommand\fillred[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,red,thin] (\angVis:1) arc (\angVis:\angVis+180:1); } \newcommand\DrawLatitudeCircle[2][1]{ \LatitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)} % angle of "visibility" \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))} \draw[current plane,thin,black] (\angVis:1) arc (\angVis:-\angVis-180:1); \draw[current plane,thin,dashed] (180-\angVis:1) arc (180-\angVis:\angVis:1); }%Defining functions to draw limited latitude circles (for the red mesh) \newcommand\DrawLatitudeCirclered[2][1]{ \LatitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)} % angle of "visibility" \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))} %\draw[current plane,red,thick] (-\angVis-50:1) arc (-\angVis-50:-\angVis-20:1); \draw[current plane,red,thick] (-50:1) arc (-50:-35:1); } \tikzset{% >=latex, inner sep=0pt,% outer sep=2pt,% mark coordinate/.style={inner sep=0pt,outer sep=0pt,minimum size=3pt, fill=black,circle}% } \pagestyle{empty} \begin{document} \begin{figure}[ht!] \begin{tikzpicture}[scale=1,every node/.style={minimum size=1cm}] %% some definitions \def\R{4} % sphere radius \def\angEl{25} % elevation angle \def\angAz{-100} % azimuth angle \def\angPhiOne{-50} % longitude of point P \def\angPhiTwo{-35} % longitude of point Q \def\angBeta{30} % latitude of point P and Q %% working planes \pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole \LongitudePlane[xzplane]{\angEl}{\angAz} \LongitudePlane[pzplane]{\angEl}{\angPhiOne} \LongitudePlane[qzplane]{\angEl}{\angPhiTwo} \LatitudePlane[equator]{\angEl}{0} \fill[ball color=white!10] (0,0) circle (\R); % 3D lighting effect \coordinate (O) at (0,0); \coordinate[mark coordinate] (N) at (0,\H); \coordinate[mark coordinate] (S) at (0,-\H); \path[xzplane] (\R,0) coordinate (XE); %defining points outsided the area bounded by the sphere \path[qzplane] (\angBeta:\R+5.2376) coordinate (XEd); \path[pzplane] (\angBeta:\R) coordinate (P);%fino alla sfera \path[pzplane] (\angBeta:\R+5.2376) coordinate (Pd);%sfora di una quantità pari a 10 dopo la sfera \path[pzplane] (\angBeta:\R+5.2376) coordinate (Td);%sfora di una quantità pari a 10 dopo la sfera \path[pzplane] (\R,0) coordinate (PE); \path[pzplane] (\R+4,0) coordinate (PEd); \path[qzplane] (\angBeta:\R) coordinate (Q); \path[qzplane] (\angBeta:\R) coordinate (Qd);%sfora di una quantità pari a 10 dopo la sfera \path[qzplane] (\R,0) coordinate (QE); \path[qzplane] (\R+4,0) coordinate (QEd);%sfora di una quantità 10 dalla sfera sul piano equat. \DrawLongitudeCircle[\R]{\angPhiOne} % pzplane \DrawLongitudeCircle[\R]{\angPhiTwo} % qzplane \DrawLatitudeCircle[\R]{\angBeta} \DrawLatitudeCircle[\R]{0} % equator %labelling north and south \node[above=8pt] at (N) {$\mathbf{N}$}; \node[below=8pt] at (S) {$\mathbf{S}$}; \draw[-,dashed, thick] (N) -- (S); \draw[->] (O) -- (P); \draw[dashed] (XE) -- (O) -- (PE); \draw[dashed] (O) -- (QE); %connecting Points outside the sphere \draw[-,dashed,black,very thick] (O) -- (Pd); \draw[-,dashed,black,very thick] (O) -- (PEd); \draw[-,dashed,black,very thick] (O) -- (QEd); \draw[-,dashed,black,very thick] (O) -- (XEd); \draw[dashed] (XE) -- (O) -- (PE); %draw black thick flat grid \draw[-,ultra thick,black] (Pd) -- (PEd) node[below, left] {$P_1$};%verticale sinistro \draw[-,ultra thick,black] (PEd) -- (QEd)node[below, right] {$P_3$};%orizzontale inferiore \draw[-,ultra thick,black] (Pd)-- (XEd)node[above, right] {$P_2$};%orizzontale superiore \draw[-,ultra thick,black] (XEd) -- (QEd); \draw[pzplane,->,thin] (0:0.5*\R) to[bend right=15] node[midway,right] {$\lambda$} (\angBeta:0.5*\R); \path[pzplane] (0.5*\angBeta:\R) node[right] {$$}; \path[qzplane] (0.5*\angBeta:\R) node[right] {$$}; \draw[equator,->,thin] (\angAz:0.5*\R) to[bend right=30] node[pos=0.4,above] {$\phi_1$} (\angPhiOne:0.5*\R); \draw[equator,->,thin] (\angAz:0.6*\R) to[bend right=35] node[midway,below] {$\phi_2$} (\angPhiTwo:0.6*\R); \path[xzplane] (0:\R) node[below] {$$}; \path[xzplane] (\angBeta:\R) node[below left] {$$}; \foreach \t in {0,2,...,30} { \DrawLatitudeCirclered[\R]{\t} } \foreach \t in {130,133,...,145} { \DrawLongitudeCirclered[\R]{\t} } %drawing grids on the spere invoking DLongredd and DrawLongitudeCirclered \foreach \t in {130,145,...,145} { \DLongredd[\R+3]{\t} } \foreach \t in {130,133,...,145} { \DrawLongitudeCirclered[\R+3]{\t} } \foreach \t in {0,30,...,30} { \DLatred[\R+3]{\t} } \foreach \t in {0,2,...,30} { \DrawLatitudeCirclered[\R+3]{\t} } %labelling \draw[-latex,thick](4,-5.5)node[left]{$\mathsf{Grid(s)\ in\ Fig. \ (\ref{fig:Grid})}$} to[out=0,in=270] (5.8,-2.3); \draw[thick](3.6,-6)node[left]{$[\mathsf{Rectilinear}]$}; \end{tikzpicture} \caption[Representation of spherical and regular computational grids used by SWAN] {Representation of spherical (red) and cartesian (black) co-ordinate systems. Latter gives an example of unstructured grids. Both unstructured. Conversion from former to latter involves a deformation factor which is acceptable within a given spatial limit. For my case, only unstructured flat meshes are employed (\textit{Lisboa} Geodetic datum: black grid on the right). Confront above represented points ($P_1,P_2,P_3$) with Fig.(\ref{fig:Grid}). \\Mathematically frames change accordingly: see Eq.(\ref{eq:actbal2sph}).} \label{fig:frames} \end{figure} \end{document}
Click to download: spherical-and-cartesian-grids.tex • spherical-and-cartesian-grids.pdf
Open in Overleaf: spherical-and-cartesian-grids.tex